the automorphism group for p-central p-groups
نویسندگان
چکیده
a $p$-group $g$ is $p$-central if $g^{p}le z(g)$, and $g$ is $p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin g$. we prove that for $g$ a finite $p^{2}$-abelian $p$-central $p$-group, excluding certain cases, the order of $g$ divides the order of $text{aut}(g)$.
منابع مشابه
the automorphism group for $p$-central $p$-groups
a $p$-group $g$ is $p$-central if $g^{p}le z(g)$, and $g$ is $p^{2}$-abelian if $(xy)^{p^{2}}=x^{p^{2}}y^{p^{2}}$ for all $x,yin g$. we prove that for $g$ a finite $p^{2}$-abelian $p$-central $p$-group, excluding certain cases, the order of $g$ divides the order of $text{aut}(g)$.
متن کاملOn the nilpotency class of the automorphism group of some finite p-groups
Let $G$ be a $p$-group of order $p^n$ and $Phi$=$Phi(G)$ be the Frattini subgroup of $G$. It is shown that the nilpotency class of $Autf(G)$, the group of all automorphisms of $G$ centralizing $G/ Fr(G)$, takes the maximum value $n-2$ if and only if $G$ is of maximal class. We also determine the nilpotency class of $Autf(G)$ when $G$ is a finite abelian $p$-group.
متن کاملTHE AUTOMORPHISM GROUP OF FINITE ABELIAN p-GROUPS
The endomorphisms and the automorphisms of a finite abelian p-group are presented in an efficient way. The order of the automorphism group is computed and its structure investigated. Finally the characteristic subgroups are described for p > 2 and the fully invariant subgroups for any p.
متن کامل2 F eb 2 00 6 Almost All p - Groups Have Automorphism Group a p - Group When p is Odd
Many common finite p-groups admit automorphisms of order coprime to p, and when p is odd, it is reasonably difficult to find finite p-groups with automorphism group a p-group. Yet the goal of this paper is to prove that almost all finite p-groups do have automorphism group a p-group when p is odd. The asymptotic sense in which the theorem holds involves bounding the Frattini length of the p-gro...
متن کاملon the nilpotency class of the automorphism group of some finite p-groups
let $g$ be a $p$-group of order $p^n$ and $phi$=$phi(g)$ be the frattini subgroup of $g$. it is shown that the nilpotency class of $autf(g)$, the group of all automorphisms of $g$ centralizing $g/ fr(g)$, takes the maximum value $n-2$ if and only if $g$ is of maximal class. we also determine the nilpotency class of $autf(g)$ when $g$ is a finite abelian $p$-group.
متن کاملon the nilpotency class of the automorphism group of some finite p-groups
let $g$ be a $p$-group of order $p^n$ and $phi$=$phi(g)$ be the frattini subgroup of $g$. it is shown that the nilpotency class of $autf(g)$, the group of all automorphisms of $g$ centralizing $g/ fr(g)$, takes the maximum value $n-2$ if and only if $g$ is of maximal class. we also determine the nilpotency class of $autf(g)$ when $g$ is a finite abelian $p$-group.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of group theoryناشر: university of isfahan
ISSN 2251-7650
دوره 1
شماره 2 2012
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023